Functions | |
def | mcf (n, c) |
def | mtz (n, c) |
def | mtz_strong (n, c) |
def | scf (n, c) |
def | sequence (arcs) |
Variables | |
list | arcs = [(i, j) for (i, j) in x if model.getVal(x[i, j]) > .5] |
dictionary | c |
def | cost = model.getObjVal() |
f | |
def | model = mtz(n, c) |
int | n = 5 |
list | sol = [i for (p, i) in sorted([(int(model.getVal(u[i]) + .5), i) for i in range(1, n + 1)])] |
u | |
x | |
def atsp.mcf | ( | n, | |
c | |||
) |
mcf: multi-commodity flow formulation for the (asymmetric) traveling salesman problem Parameters: - n: number of nodes - c[i,j]: cost for traversing arc (i,j) Returns a model, ready to be solved.
Definition at line 128 of file atsp.py.
References pyscipopt.expr.quicksum().
def atsp.mtz | ( | n, | |
c | |||
) |
mtz: Miller-Tucker-Zemlin's model for the (asymmetric) traveling salesman problem (potential formulation) Parameters: - n: number of nodes - c[i,j]: cost for traversing arc (i,j) Returns a model, ready to be solved.
Definition at line 17 of file atsp.py.
References pyscipopt.expr.quicksum().
def atsp.mtz_strong | ( | n, | |
c | |||
) |
mtz_strong: Miller-Tucker-Zemlin's model for the (asymmetric) traveling salesman problem (potential formulation, adding stronger constraints) Parameters: n - number of nodes c[i,j] - cost for traversing arc (i,j) Returns a model, ready to be solved.
Definition at line 50 of file atsp.py.
References pyscipopt.expr.quicksum().
def atsp.scf | ( | n, | |
c | |||
) |
scf: single-commodity flow formulation for the (asymmetric) traveling salesman problem Parameters: - n: number of nodes - c[i,j]: cost for traversing arc (i,j) Returns a model, ready to be solved.
Definition at line 87 of file atsp.py.
References pyscipopt.expr.quicksum().
def atsp.sequence | ( | arcs | ) |
dictionary c |