Functions | |
def | example () |
def | make_data (n, m) |
def | permutation_flow_shop (n, m, p) |
Variables | |
f | |
int | m = 10 |
def | model = permutation_flow_shop(n, m, p) |
int | n = 15 |
def | p = make_data(n, m) |
s | |
list | seq = [j for (k, j) in sorted([(k, j) for (j, k) in x if model.getVal(x[j, k]) > 0.5])] |
for (j,k) in sorted(x): if x[j,k].X > 0.5: print(x[j,k].VarName,x[j,k].X More... | |
x | |
def pfs.make_data | ( | n, | |
m | |||
) |
def pfs.permutation_flow_shop | ( | n, | |
m, | |||
p | |||
) |
gpp -- model for the graph partitioning problem Parameters: - n: number of jobs - m: number of machines - p[i,j]: processing time of job i on machine j Returns a model, ready to be solved.
Definition at line 15 of file pfs.py.
References pyscipopt.expr.quicksum().