Functions | |
| def | example () |
| def | make_data (n, m) |
| def | permutation_flow_shop (n, m, p) |
Variables | |
| f | |
| int | m = 10 |
| def | model = permutation_flow_shop(n, m, p) |
| int | n = 15 |
| def | p = make_data(n, m) |
| s | |
| list | seq = [j for (k, j) in sorted([(k, j) for (j, k) in x if model.getVal(x[j, k]) > 0.5])] |
| for (j,k) in sorted(x): if x[j,k].X > 0.5: print(x[j,k].VarName,x[j,k].X More... | |
| x | |
| def pfs.make_data | ( | n, | |
| m | |||
| ) |
| def pfs.permutation_flow_shop | ( | n, | |
| m, | |||
| p | |||
| ) |
gpp -- model for the graph partitioning problem
Parameters:
- n: number of jobs
- m: number of machines
- p[i,j]: processing time of job i on machine j
Returns a model, ready to be solved.
Definition at line 15 of file pfs.py.
References pyscipopt.expr.quicksum().